Electrical Maintenance Workshop

Transformer Maintenance & Testing

Thursday, November 6, 2003

Transformer Maintenance & Testing Purpose

- This presentation provides an overview of the major considerations associated with Transformer Maintenance and Testing.
- Barker Edwards will provide the information for Transformer Maintenance & Testing.
- Kate Brady will provide the information for Transformer Oil Testing.

Things to know!

Things you should know about keeping your transformer healthy!

Agenda

- Types of transformers
- Yearly checks
- Testing of transformers
- Vacuum pressure device
- Pressure relief device
- Sudden pressure relay
- Gaskets
- Paints

Types of transformers

- Dry type transformers
 - Varnished coils

Types of transformers

- Dry type transformers
 - Cast coils

Type of transformers

- Oil filled transformers
 - Sealed tank

Type of transformers

- Oil filled transformers
 - Conservator system

Type of transformers

- Oil filled transformers
 - Nitrogen blanket

Pressure regulator for Nitrogen Blanket transformer

Yearly transformer checks

- Check vacuum pressure gauge for pressure reading.
- Check oil level.
- Check temperature maximum and minimum.
- Check for leaks.
- Check paint condition.
- Check transformer top and radiators for foreign material.
- Check radiator condition.
- Check fans and cooling systems.

Testing of transformers

Megger test

600 megohms or better to ground is a good bench mark.

Testing of transformers

Power factor test or "Doble" test

- Readings should be .5% or less on newer equipment.
- Readings should be 1% or less on older equipment that has been in service for a number of years.
- Padmount transformers will usually run .7% to 1%.

Testing of transformers

- Infrared test
 - This equipment checks for hot connections and hot spots.
 - Can be used to check how the cooling is working on transformers.

Testing of transformers

TTR test - Transformer Turns Ratio test

3 phase TTR set

Single phase TTR set

- Readings should not deviate more than ½ of 1% from the calculated value.

Vacuum pressure devices

 Vacuum pressure devices

Used to control the amount of positive and negative pressure a transformer tank has on it.

Pressure relief devices

Pressure relief devices

Used to relieve pressure build up in the transformer.

Sudden pressure relay

Sudden pressure relay

This device detects a sudden rise in pressure in the transformer.

Gaskets

- Gaskets shall be 1.33 times the height of groove and .75 times the width of the groove.
- Types of gasket material:
 - Cork / Corkprene
 - Nitrile / Buna N Rubber
 - Viton Rubber

- Types
 - Acrylic enamel
 - Epoxy base

Break

Transformer Oil Testing

Agenda

- Transformer oil
- Oil sampling
- Oil quality
- Dissolved gas analysis
- Cellulose insulation
- Oil processing

Transformer Oil Testing Transformer oil

- Silicon based oil
- Mineral oil
- Synthetic oils
- Ester / vegetable oils

Transformer Oil Testing Oil sampling

A Test is Only as Good as the Sample! Start with good, clean syringes!

Transformer Oil Testing Proper oil sampling

 Do Not use small sampling port on side of drain valve.

Transformer Oil Testing Proper oil sampling

Flush drain valve, tubing, and syringe.

Transformer Oil Testing Proper oil sampling – (continued)

 Do not pull back on the syringe barrel

 apply slight resistance and allow fluid pressure to fill syringe.

Transformer Oil Testing Proper oil sampling – (continued)

 Filled syringe should have no bubbles, but some may form later – do not release these!

Transformer Oil Testing Proper oil sampling – (continued)

- Excellent Sampling
 Guidelines available on
 Doble Engineering
 website
 - www.Doble.com
 - Click on "Laboratory Services"
 - Sampling Guides:
 - ◆ Dielectric Liquids
 - Dissolved Gas Analysis

©2002 Doble Engineering Company All Rights Reserved

Transformer Oil Testing Oil quality

- Interfacial tension
- Acidity
- Moisture
- Dielectric
- Power factor
- Color

Transformer Oil Testing Interfacial Tension - IFT

- Measure of contamination
- Decreasing IFT = Increasing Contamination
- Can be corrected

Transformer Oil Testing Acidity

- Measure of oxidation
- Creates acidic compounds
- Build-up of compounds forms sludge
- Affects dielectric and cooling
- Can be corrected

Transformer Oil Testing Moisture

- Decreases dielectric
- Decreases IFT
- Degrades cellulose
- Failure risk
- Can be corrected

Transformer Oil Testing

Dielectric breakdown

- Voltage at which the oil begins to conduct
- Is reduced by moisture and contaminants
- Two ASTM test methods:
 - D-877
 - D-1816
- Can be corrected

Transformer Oil Testing

Power factor

- Indication of contamination and/or deterioration
 - moisture
 - carbon
 - varnish
 - soaps
 - other conducting matter

Transformer Oil Testing Color

- Darker Oil

 More Contamination, Deterioration
- Oil with Number of 5 is almost black

Transformer Oil Testing Dissolved gas analysis

 DGA is the "blood test" for a transformer

Transformer Oil Testing Dissolved gas analysis

- Partial discharge (Corona "electrical rust")
 - Hydrogen H₂
- High temperature heating
 - Methane CH₄, Ethane C₂H₄, Ethylene C₂H₆
- Arcing
 - Acetylene C₂H₂
- Cellulose involved
 - Carbon monoxide C0, and Carbon Dioxide CO₂

Cellulose insulation

- The Life of the Transformer is directly related to the condition of the cellulose
 - Paper windings, leads, shields
 - Pressboard spacers, blocks, oil flows, tubes
 - Particle boards supports
 - Laminates structures, supports
 - Wood structure

Paper

Many layers of paper on this flux shield

Pressboard

PressboardSheets for directingoil flow

Paper and pressboard

Paperwrappedwindings

Pressboard spacers

Particle board

Particle
 Board Lead
 Support
 that
 flashed
 over

Laminates

Laminate Nuts

Laminate lead support structure members

Wood

BirchStructureSupportMembers

The Cellulose Polymer Chain

The life of a transformer is directly related to the condition of this polymer chain.

Degree of polymerization

- Measure of mechanical strength
- New paper = 1000 1400
- Age increases ↑ DP decreases
- Industry accepted "End of Life" of cellulose insulation is about 200
- Estimated DP from Furan test

What degrades the cellulose?

- Primary sources
 - Heat
 - Moisture
 - Oxygen
- Secondary sources
 - Acids from oil oxidation

Why is this important?

- Reduced dielectric strength
 - Unable to withstand voltage stress from system transients
- Reduced mechanical strength
 - Unable to withstand mechanical stress from system faults

What can we do about it?

- Keep the Transformer Healthy!
 - Do not overheat
 - Keep moisture and oxygen out
- If the Transformer is Sick, Get Help!
 - Investigate abnormal DGA results
 - Process or replace the oil
 - De-hydrate
 - Hot oil flush

Transformer oil processing

What processes?

- De-gas
- Dehydrate
- Hot oil flush
- Reclaim oil

Other maintenance options

- Upgrades to oil preservation system
 - Bladders
 - De-hydrating breathers
 - N2 blanket
- On-line monitoring systems
 - Gas and moisture
 - Bushing monitors

Avoid Premature Failure!

