Understanding Power Factor and How it Affects Your Electric Bill

Presented by Scott Peele PE

Progress Energy

Understanding Power Factor

- Definitions
 - kVA, kVAR, kW, Apparent Power vs. True Power
- Calculations Measurements
- Power Factor Correction
 - Capacitors
- System Impacts
 - I² R losses, Chapter 9 NEC
 - Equipment sizing
- Power Factor Charges
- Problems with adding Caps
 - Harmonic resonance
 - Volt rise
- Power Factor vs Load Factor

What is Power Factor

Power Factor is the cosine of the phase angle between current and voltage.

Power Factor is the ratio of true power to apparent power.

Understanding Alternating Current AC

Phase Angle

Three Basic Circuits or Loads

- Resistive ______
- Inductive ww
- Capacitive —
- Or any combination
 - Resistive Inductive
 - Inductive Capacitive

- Resistive Capacitive
- Resistive Inductive Capacitive

Types of Loads

- Resistive Incandescent Lamp Resistance heat
- Inductive Motors Contactor Coils Relays (coils)
- Capacitive Capacitors Start Capacitors – Run Capacitors – Power Factor Correction Capacitors

Resistive Loads In Phase

Duration Time

Inductive Loads Lagging

Capacitive Loads Leading

What is Power

- Power is measured in Watts.
- Volts X Amps X Power Factor = Watts
- Watts only equals Volts X Amps when the Power Factor is 1 or unity.
- Most of the time the Power Factor is less than 1.
- Power = Watts : True Power
- Volts X Amps = VA : Apparent Power

Understanding Right Triangles

Power Triangle

Power Factor = $\cos \theta$

B= Side Adjacent

= A

Understanding Power Triangle

B= True Power

Watts, KW, Power

Graphical representation of resistance, reactance, and impedance

Graphical representation of resistance, reactance, and impedance

10 HP 460 Volt 4 Pole Motor

Transformer

Conductor

Load	Power Factor	VA	Amps	Watts	VAR	Amps Reactive	Amps Resistive
125%	0.82	13203	16.6	10883	7476	9.4	13.7
115%	0.81	12240	15.4	9972	7099	8.9	12.5
100%	0.79	10830	13.6	8592	6593	8.3	10.8
75%	0.73	8771	11.1	6397	6002	7.5	8.0
50%	0.61	7105	8.9	4323	5639	7.1	5.4
25%	0.40	5886	7.4	2331	5405	6.8	2.9
min load	0.17	5399	6.8	911	5322	6.7	1.1

10 HP Adding Capacitance

Transformer

10 HP Energy Savings

Transformer

= KW Load (resistive)

Conductor

= KVAR Load (reactive)

200 Feet of #12 Gauge wire

Saving are calculated on I^2 R losses. Using a # 12 gauge wire from Table 9 in the NEC the resistance is 2 ohms per 1000 feet. 200' @ 2 Ohms/1000' is .5 ohms. Using this the total saving will be approx. 11.8 watts. NOTE: This is only if the capacitor is at the motor. $2.8^2 X.5 = 3.92$ $3 \times 3.92 = 11.76$ Motor

10 HP Capacitor Sizing

Based on one month operation at 8 hours a day

Example of Power Factor Charge							
PF Charge Factor							
NC Charge		\$0.40	kW Charge	\$10.25			
Max Billing kW		8.592	kWh Charge	\$0.03854			
Power Factor		0.79					
Calc	kVA	10.8759	kW	8.6			
Calc	kVAR	6.6681	kWh	2064			
Less than .85 then a \$0.4 For kVar – (kW X.62	0 charge 2)	DE Charge	¢0.54				
In this Case \$0.54	Ļ	kW Charge	\$88.15				
		kWh Charge	\$79.55				
		Total Charge	\$168.23				

10 Horse Power Motor

Power Factor vs Amps

Volts	Amps	VA	kW	Power Factor	VAR	Amps Reactive	Amps Resistive
208	83	10000	10	1	0	0	83
208	88	10526	10	0.95	3287	28	83
208	92	11111	10	0.9	4843	41	83
208	98	11765	10	0.85	6197	52	83
208	104	12500	10	0.8	7500	63	83
208	111	13333	10	0.75	8819	74	83
208	119	14286	10	0.7	10202	85	83
208	139	16667	10	0.6	13333	111	83
208	166	20000	10	0.5	17321	144	83

Power Factor vs Amps

10 HP Voltage Rise

kVAR * X_{source}/kVA/100 = Voltage Rise %
Note This does not include the wire inductance that will cause some additional rise in voltage.
Note: With this voltage rise an increase in kW and kwh can occur.

Things We have Talked About And Other Things to Talk About

- Phase Angle
- Power Factor
- I²R Loss
- Power Factor Penalty
- Voltage Rise
- Harmonic resonance
- Load Factor --- Power Factor

Harmonic Resonance

Harmonic Filters

Power Factor Vs Load Factor

• They have no relation

Load Factor is kW at 100% operation
 Yielding so many kWh vs. Actual kWh

Example

Hours in a Month = 30 X 24 = 720 Hours

Load is at 8 kW

8 X 720 = 5760 kWh

Actual kWh by load is 3240

Load Factor then is 3240/5760

Load Factor = .56

BOTTOM LINE ON Understanding Power Factor and How it Affects Your Electric Bill

- Very small charge with penalty most customer have no Power Factor Penalty
- None or very small savings or possible increase cost when using Power Factor Correction Devices

Questions

